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Rectangular Hybrid Games

(Extended Abstract)�

Thomas A. Henzinger Benjamin Horowitz Rupak Majumdar

ftah,bhorowit,rupakg@eecs.berkeley.edu

March 1999

Abstract. In order to study control problems for hybrid systems, we generalize
hybrid automata to hybrid games |say, controller vs. plant. If we specify the
continuous dynamics by constant lower and upper bounds, we obtain rectangular
games. We show that for rectangular games with objectives expressed in Ltl

(linear temporal logic), the winning states for each player can be computed, and
winning strategies can be synthesized. Our result is sharp, as already reach-
ability is undecidable for generalizations of rectangular systems, and optimal
|singly exponential in the game structure and doubly exponential in the Ltl
objective. We also show how symbolic methods, whose proof of convergence
depends on the existence of certain �nite quotient structures for hybrid games,
can be used to obtain more practical algorithms for solving many rectangular
control problems. In this way we are able to systematically generalize the the-
ory of hybrid systems from automata (single-player structures) [Hen96] to games
(multi-player structures).

1 Introduction

A hybrid automaton [ACH+95] is a mathematical model for a system with both discretely
and continuously evolving variables, such as a digital computer that interacts with an
analog environment. An important special case of a hybrid automaton is the rectangular
automaton [HKPV98], where each discrete variable ranges over a �nite domain, the enabling
condition for each discrete change is a rectangular region of continuous states, and the �rst
derivative of each continuous variable x is bounded by constants from below and above; that
is, _x 2 [a; b]. Rectangular automata are important for several reasons. First, they generalize
timed automata [AD94] (for which a = b = 1) and naturally model real-time systems whose
clocks have bounded drift. Second, they can over-approximate with arbitrary precision the
behavior of hybrid automata with general linear and nonlinear continuous dynamics, as
long as all derivatives satisfy the Lipschitz condition [PBV96, HHWT98]. Third, they form
a most general class of hybrid automata for which the Ltl model-checking problem can be
decided: given a rectangular automaton A and a formula ' of linear temporal logic over

�This research was supported in part by the Defense Advanced Research Projects Agency grant NAG2-
1214.
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the discrete states of A, it can be decided in polynomial space if all possible behaviors of A
satisfy ' [HKPV98].

Since hybrid automata are often used to model digital controllers for analog plants, an
important problem for hybrid automata is the Ltl control problem: given a hybrid automa-
ton A and an Ltl formula ', can the behaviors of A be \controlled" so as to satisfy '?
However, the hybrid automaton per se is an inadequate model for studying this problem
because it does not di�erentiate between the capabilities of its individual components |the
controller and the plant, if you wish. Since the control problem is naturally formalized in
terms of a two-player1 game, we de�ne hybrid games. Because our setup is intended to
be as general as possible, we do not distinguish between a \discrete player" (which directs
discrete state changes) and a \continuous player" (which advances time); rather, in a hybrid
game, each of the two players can itself act like a hybrid automaton. The game proceeds in
an in�nite sequence of rounds and produces an !-sequence of states. In each round, both
players independently choose enabled moves; the pair of chosen moves either results in a
discrete state change, or in a passage of time. In the special case of a rectangular game,
the enabling condition of each move is a rectangular region of continuous states, and when
time advances, then the derivative of each continuous variable is governed by a constant
di�erential inclusion. Now, the Ltl control problem for hybrid games asks: given a hybrid
game R and an Ltl formula ' over the discrete states of R, is there a strategy for player-1
so that all possible outcomes of the game satisfy '?

Our main result shows that the Ltl control problem can be decided for rectangular
games. This question had been open. Previously, beyond the �nite-state case, control prob-
lems have been solved only for timed games [HW92, MPS95, AMPS98], and for rectangular
games under the assumption that the controller can move only at integer points in time
[HK97] (sampling control). Control algorithms have also been proposed for linear and non-
linear hybrid games [Won97, Tom98], but in these cases convergence is not guaranteed. For
timed games and sampling controllers, convergence is guaranteed because the underlying
state space can be partitioned into �nitely many bisimilarity classes, and the controller
does not need to distinguish between bisimilar states. Our result is, to our knowledge, the
�rst controllability result for in�nite-state systems which does not rely on the existence of
a �nite bisimilarity quotient. Our result is sharp, because the control problem for a class of
hybrid games is at least as hard as the reachability problem for the corresponding class of
hybrid automata, and reachability has been proved undecidable for several minor extensions
of rectangular automata [HKPV98]. The complexity of our algorithm, which requires singly
exponential time in the game R and doubly exponential time in the formula ', is optimal,
because control is harder than model checking: reachability control over timed games is
Exptime hard [HK97]; Ltl control over �nite-state games is 2Exptime hard [Ros92].

Ingredient 1 of our approach to in�nite-state control: Finite quotient spaces

For the solution of in�nite-state model-checking problems, such as those of hybrid au-
tomata, it is helpful if there exists a �nite quotient space that preserves the properties
under consideration [Hen96]. Speci�cally, every timed automaton is bisimilar to a �nite-
state automaton [AD94]; every 2d rectangular automaton (with two continuous variables) is
similar (simulation equivalent) to a �nite-state automaton [HHK95]; and every rectangular
automaton is trace equivalent to a �nite-state automaton [HHK95]. Since Ltl model check-

1For the sake of simplicity, in this abstract we restrict ourselves to the two-player case. All results
generalize immediately to more than two players.
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ing can be reduced to model checking on the trace-equivalence quotient, the decidability of
Ltlmodel checking for rectangular automata follows. The three characterizations are sharp;
for example, the similarity quotient of 3d rectangular automata can be in�nite [HK96], and
therefore the quotient approach does not lead to branching-time model-checking algorithms
for rectangular automata.

We show that for appropriate generalizations of the state equivalences, the results for
rectangular automata carry over to rectangular games. Possible equivalences are alternat-
ing bisimilarity, alternating similarity, and alternating trace equivalence [AHKV98]. Specif-
ically, two states p and q of a game are alternating-1 trace equivalent if for every Ltl

formula ', player-1 can guarantee an outcome that satis�es ' from p i� she can guaran-
tee such an outcome from q. However, Ltl control cannot be reduced to controlling the
alternating trace-equivalence quotient. This is because in p and q player-1 may have to
employ di�erent moves in order to ensure an outcome which satis�es '. Such a distinction
is lost if p and q are identi�ed, and no controller can be synthesized on the quotient game.
We remedy this situation by making the moves of both players observable, so that for two
states to be equivalent, the strategies to achieve a common objective must match. The
resulting equivalences on the states of games, which re�ne the alternating equivalences, are
called game bisimilarity, game similarity, and game trace equivalence. We prove that every
timed game is game bisimilar to a �nite-state game; that every 2d rectangular game is game
similar to a �nite-state game; and that every rectangular game is game trace equivalent to a
�nite-state game. Our main theorem, the decidability of Ltl control for rectangular games,
follows.

Ingredient 2 of our approach to in�nite-state control: Symbolic computation

The quotient approach, while giving decidability results, does not immediately suggest
practical algorithms. This has several reasons. First, in order to prove the existence of a
suitable �nite quotient space for a whole class of structures (such as the class of all rectan-
gular games), the resulting quotient is likely to be unnecessarily �ne for any given structure
from the class. Second, the explicit construction of a quotient structure by enumerating
all equivalence classes, whether or not they are relevant to the property at hand, is likely
to be unnecessarily expensive. In model checking, the symbolic approach often provides a
superior alternative. For example, if we want to compute the states from which a particular
target region of a rectangular automaton is unreachable, we need not explicitly construct
the �nite trace-equivalence quotient, but only iterate a pre operator on the target region
(pre of a region R yields all states that have successor states in R) and negate the result.
This method has been implemented in the software HyTech [HHWT95]. The existence of
the �nite trace-equivalence quotient is used implicitly: it guarantees the termination of the
pre iteration.

We initiate a systematic generalization of the symbolic approach to games. For this
purpose, we replace the pre operator on transition systems (one-player structures) with the
upre1 and upre2 operators on games (two-player structures): upre1 of a region R yields all
states from which player-1 cannot prevent the game to enter a state in R within a single
step; that is, for every move of player-1, player-2 has a countermove so that the next state
is in R. Then, for example, by iterating the upre1 operator on a target region, we obtain
all states from which player-1 cannot avoid eventual entry into the target region. We show
that for all rectangular games, the upre1 iteration does indeed terminate. In the same spirit,
we also show how the upre operations, together with boolean operations on state sets, can
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be used to compute the alternating bisimilarity and similarity quotients of a given game
structure, provided the desired quotient is �nite. Hence, for a given rectangular game, the
symbolically computed quotient can be used to check which states can be controlled for
which Ltl formulas, and the corresponding controllers can be synthesized automatically.

2 Symbolic Game Structures

A transition structure (or one-player game structure) F = (Q;�; hh�ii;Moves ;Enabled ; Æ)
consists of a set Q of states, a set � of observations, an observation function hh�ii: Q! 2�

which maps each state to a set of observations, a set Moves of moves, an enabling function
Enabled : Moves ! 2Q which maps each move to the set of states in which it is enabled,
and a partial transition function Æ: Q �Moves ! 2Q which maps each move m and each
state in Enabled(m) to a set of successor states. A step of F is a triple q

m
�! q0 such that

q 2 Enabled(m) and q0 2 Æ(q;m). A run of F is an in�nite sequence r = s0s1s2 : : : of steps

sj = qj
mj

�! q0j such that qj+1 = q0j for all j � 0. The corresponding trace, denoted by hhrii,
is the in�nite sequence hhq0iihhq1iihhq2ii : : : of observation sets. The corresponding trace with
observable moves, denoted by hhriiobs , is the in�nite sequence hhq0iim

0hhq1iim
1hhq2iim

2 : : : of
alternating observation sets and moves. For a state q, the outcome Rq from q is the set of
all runs of F which start at q. For a set R of runs, we write hhRii for the set fhhrii j r 2 Rg
of corresponding traces, and similarly for traces with observable moves.

2.1 Game structures and the LTL control problem

A (two-player) game structure G = (Q;�; hh�ii;Moves 1;Moves2;Enabled 1;Enabled 2; Æ) con-
sists of the same components as above, only that Moves1 (respectively Moves2) is the set
of moves of player-1 (respectively player-2), Enabled 1: Moves1 ! 2Q, Enabled2: Moves2 !
2Q, and the partial transition function Æ: Q � Moves1 � Moves2 ! Q maps each move
m1 of player-1, each move m2 of player-2, and each state in Enabled1(m1) \ Enabled 2(m2)
to a set of successor states. For i = 1; 2, we de�ne mov i: Q ! 2Movesi to yield for
each state q the set mov i(q) = fm 2 Movesi j q 2 Enabled i(m)g of player-i moves
that are enabled in q. With the game G we associate the underlying transition structure
FG = (Q;�; hh�ii;Moves 1 �Moves2;Enabled ; Æ

0), where Enabled(m1;m2) = Enabled1(m1)\
Enabled2(m2) and Æ0(q; (m1;m2)) = Æ(q;m1;m2).

At each step of a game, player-1 chooses a move m1 which is enabled in the current
state q, player-2 independently chooses a move m2 which is enabled in q, and the game
proceeds nondeterministically to a new state in Æ(q;m1;m2). Formally, a step of G is a

triple q
m1;m2

�! q0 such that q 2 Enabled1(m1) \ Enabled2(m2) and q0 2 Æ(q;m1;m2). The
runs and traces (with or without observable moves) of games are de�ned as for transition
structures.

A strategy for player-i is a function fi: Q+ ! Movesi such that fi(w � q) 2 mov i(q)
for every state sequence w 2 Q� and state q 2 Q. The strategy fi is memory-free if
fi(w � q) = fi(w

0 � q) for all w;w0 2 Q� and q 2 Q. Let f1 and f2 be strategies for player-1
and player-2, respectively. The outcome Rq

f1;f2
from state q 2 Q for the strategies f1 and

f2 is a subset of the runs of G which start at q: a run s0s1s2 : : : is in Rq
f1;f2

if for all j � 0,

if sj = qj
m

j
1
;m

j
2�! q0j, then mj

i = fi(q0q1 � � � qj) for i = 1; 2 and q0 = q. The formulas of linear
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temporal logic (Ltl) are generated inductively by the grammar

' ::= � j :' j '1 _ '2 j 
' j '1U'2

where � is an observation in �. The Ltl formulas are interpreted over the traces of G in
the usual way [Eme90]. We write t j= ' if the trace t satis�es the Ltl formula '. Player-1
can control2 the state q 2 Q for ' if there exists a strategy f1 of player-1 such that for
every strategy f2 of player-2, hhrii j= ' for every run r 2 Rq

f1;f2
. In this case, we say that

the strategy f1 witnesses the player-1 controllability of q for '.
The Ltl control problem asks, given a game structure G and an Ltl formula ', which

states of G can be controlled by player-1 for '. The Ltl controller synthesis problem asks,
in addition, for the construction of witnessing strategies. If the game structure G is �nite,
the Ltl control problem is Ptime-complete in the size of G and 2Exptime-complete in
the length of ' [Ros92, AHK97]. While for simple Ltl formulas such as safety (2� for
� 2 �) controllability ensures the existence of memory-free witnesses, this is not the case
for arbitrary Ltl formulas [Tho95].

2.2 State equivalences and quotients for game structures

State equivalences on transition structures. Consider a transition structure F =
(Q;�; hh�ii;Moves ;Enabled ; Æ). A binary relation �s � Q � Q is a (forward) simulation if
p �s q implies the following two conditions:

1. hhpii = hhqii;
2. 8m 2 mov(p): 8p0 2 Æ(p;m): 9m0 2 mov(q): 9q0 2 Æ(q;m0): p0 �s q0.

We say that p is simulated by q, in symbols p �S q, if there is a simulation �s with p �s q.
We write p �=S q if both p �S q and q �S p. The relation �=S is called similarity. A binary
relation �=b on Q is a bisimulation if �=b is a symmetric simulation. De�ne p �=B q if there
is a bisimulation �=b with p �=b q. The relation �=B is called bisimilarity. A binary relation
��s on Q is a backward simulation if p ��s q implies hhpii = hhqii and for all states p0, for all
moves m 2 mov(p0) such that p 2 Æ(p0;m) there exists a state q0 and a move m0 2 mov(q0)
such that q 2 Æ(q0;m0) and p0 ��s q0. A binary relation �l on Q is a trace containment if
p �l q implies hhRpii � hhRqii. De�ne p �L q if there is a trace containment �l with p �l q.
We write p �=L q if both p �L q and q �L p. The relation �=L is called trace equivalence.

We also de�ne stronger versions of these equivalences, where the moves are observable.
A simulation �s has observable moves if condition 2 is strengthened to

2a. mov(p) � mov(q);
2b. 8m 2 mov (p): 8p0 2 Æ(p;m): 9q0 2 Æ(q0;m): p0 �s q0.

Similarity with observable moves, denoted �=S
obs , is the kernel of the coarsest simulation with

observable moves; and bisimilarity with observable moves, �=B
obs , is the coarsest symmetric

simulation with observable moves. Two states p and q are trace equivalent with observable
moves, written p �=L

obs q, if hhR
piiobs = hhRqiiobs .

Clearly, �=B re�nes �=S , and �=S re�nes �=L. The relations with observable moves re�ne
the corresponding relations without observable moves. In general, all re�nements are proper.

2Our choice to control for Ltl formulas rather than, say, !-automata [Tho95] is arbitrary. In the latter
case, only the complexity results must be modi�ed accordingly.
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Alternating state equivalences on game structures. Consider a game structure

G = (Q;�; hh�ii;Moves1;Moves2;Enabled1;Enabled 2; Æ)

The following de�nitions, due to [AHKV98], capture various notions of when two states
have the same controllability properties. A binary relation �s

1 � Q � Q is an alternating
player-1 simulation if p �s

1 q implies

1. hhpii = hhqii;
2. 8m0

1 2 mov1(q): 9m1 2 mov1(p): 8m2 2 mov2(p): 8p
0 2 Æ(p;m1;m2): 9m

0
2 2

mov2(q): 9q
0 2 Æ(q;m0

1;m
0
2): p

0 �s
1 q

0.

Note that all nondeterminism in the outcome of a game is controlled by the adversarial
player-2. To de�ne alternating player-2 simulation, switch the occurrences of 1 and 2 in
the above de�nition. We say that p is alternating player-i simulated by q, denoted p �S

i q,
if there exists an alternating player-i simulation �s

i such that p �s
i q. The states p and

q are alternating player-i similar, denoted p �=S
i q, if p �S

i q and q �S
i p. An alternating

player-i bisimulation is a symmetric alternating player-i simulation �=b
i . The states p and

q are alternating player-i bisimilar, denoted p �=B
i q, if there exists an alternating player-i

bisimulation �=b
i such that p �=b

i q.
The state p is alternating player-1 trace contained by q, denoted p �L

1 q, if for every
strategy f1 of player-1, there exists a strategy f 01 of player-1 such that for every strategy f 02
of player-2, there exists a strategy f2 of player-2 such that hhRq

f 0
1
;f 0
2

ii � hhRp
f1;f2

ii. To de�ne

alternating player-2 trace containment, switch the occurrences of 1 and 2 in the above
de�nition. The states p and q are alternating player-i trace equivalent, denoted p �=L

i q, if
p �L

i q and q �L
i p.

On game structures, �=B
i re�nes �=S

i , and
�=S
i re�nes �=L

i [AHKV98]. Moreover, alternat-
ing trace equivalence characterizes Ltl controllability.

Proposition 2.1 [AHKV98] Consider two states p and q of a game structure. If p �L
i q,

then for every Ltl formula ', if player-i can control p for ', then player-i can also control
q for '. Conversely, if p 6�L

i q, then there exists an Ltl formula ' such that player-i can
control for ' at p but not at q.

However, if p �L
i q, then in order to control for some Ltl formula ', player-i may have to

use di�erent moves at p and q, even if p and q are alternating player-i bisimilar. This is
shown by the game structure of �gure 1.

Game equivalences. In order to preserve not only controllability, but also the moves
of the controller, we de�ne alternating state equivalences with observable moves; they are
called game equivalences. A binary relation �s

obs � Q�Q is a game simulation if p �s
obs q

implies the following conditions:

1. hhpii = hhqii;
2a. mov1(q) � mov 1(p) and mov2(p) � mov 2(q);
2b. 8m1 2 mov1(q): 8m2 2 mov2(p): 8p

0 2 Æ(p;m1;m2): 9q
0 2 Æ(q0;m1;m2):

p0 �s
obs q

0.

Note that the symmetry of the quanti�ers implies that game simulations need not be pa-
rameterized by a player. A relation �l

obs on Q is a game trace containment if p �l
obs q

implies that for all strategies f1 of player-1, there exists a strategy f 01 of player-1 such that

6



(b; 2)
(a; 2)

(a; 1)
(a; 2)
(b; 2)

(b; 1)

(a; 1) (b; 1)

q2

q3
:�

� �
q1

Figure 1: Player-1 needs to use di�erent moves at the states q1 and q2 to control for 2�,
even though q1 and q2 are alternating player-1 bisimilar.

for all strategies f 02 of player-2, there exists a strategy f2 of player-2 such that hhRq

f 0
1
;f 0
2

iiobs �

hhRp
f1;f2

iiobs . From this, game similarity �=S
obs , game bisimilarity �=B

obs , and game trace equiv-

alence �=L
obs are de�ned in the familiar way.

It is not diÆcult to check that �=B
obs re�nes

�=S
obs , that

�=S
obs re�nes

�=L
obs , and that each

game relation re�nes the corresponding alternating relations for both players. The following
proposition, which follows immediately from the de�nitions, characterizes the game equiv-
alences in terms of the underlying transition structure: if the moves are observable, then
the game structure can be 
attened.

Proposition 2.2 Two states p and q of a game structure G are game bisimilar (respectively,
game similar, game trace equivalent) if p and q are bisimilar (respectively, similar, trace
equivalent) with observable moves in the underlying transition structure FG.

We will now show that, unlike the alternating equivalences, the game equivalences on a game
structure suggest quotient structures that can be used for control. Let � be an equivalence
relation on Q such that p � q implies p �=L

obs q. The quotient structure G=� of G with respect
to � is the game structure (Q=�;�; hh�ii=�;Moves1;Moves2;Enabled 1=�;Enabled2=�; Æ=�) with

� Q=� = f[q]� j q 2 Qg is the set of equivalence classes of �;
� hh[q]�ii=� = hhqii (note that hh�ii=� is well de�ned since hh�ii is uniform across

each equivalence class);
� [q]� 2 Enabled1(m)=� if 9p 2 [q]� : p 2 Enabled1(m) (note that this is equiv-

alent to 8p 2 [q]� : p 2 Enabled 1(m) since � re�nes �=L
obs), and analogously

for Enabled2(m)=�;
� [q0]� 2 Æ([q]� ;m1;m2)=� if 9p0 2 [q0]� : 9p 2 [q]� : p0 2 Æ(p;m1;m2).

The following proposition reduces control on G to control on the quotient structure G=�.

Proposition 2.3 Let G be a game structure with state set Q, let � be an equivalence
relation on Q such that p � q implies p �=L

obs q, let ' be an Ltl formula, and let q be a
state of G. Then player-1 can control q for ' in G i� player-1 can control [q]� for ' in the
quotient structure G=�. Moreover, if the strategy f1 witnesses the player-1 controllability of
[q]� for ' in G=�, then the strategy f 01 with f 01(p0 : : : pk) = f1([p0]� : : : [pk]�) witnesses the
player-1 controllability of q for ' in G.
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2.3 Symbolic algorithms for game structures

Consider a transition structure F = (Q;�; hh�ii;Moves ;Enabled ; Æ). A symbolic representa-
tion HF consists of the state and observation components (Q;�; hh�ii) of F together with
(1) a computable function pre: 2Q ! 2Q on state sets, which maps every state set to the
set of predecessor states

pre(P ) = fq 2 Q j 9m 2 Moves : 9p 2 Æ(q;m): p 2 Pg;

and (2) computable boolean operations on state sets (if either pre or a boolean operation
is not computable, then F has no symbolic representation). The symbolic representation
HF gives rise to �xpoint algorithms for computing the bisimilarity equivalence �=B (this
algorithm is often called partition re�nement), the similarity equivalence �=S [HHK95],
and given an observation � 2 �, the set of states q such that all traces in hhRpii satisfy
the invariant 2� (compute :

S
j�0 pre

j(:�)). For details on the �xpoint computations
and termination conditions, see [Hen96]. Here, we simply refer to the three algorithms as
algorithms for symbolic bisimilarity, symbolic similarity, and symbolic safety checking.

Now consider a game structure G = (Q;�; hh�ii;Moves1;Moves2;Enabled 1;Enabled 2; Æ).
A symbolic representation HG consists of the state and observation components (Q;�; hh�ii)
of G together with (1) two computable functions upre1, upre2: 2

Q ! 2Q on state sets such
that

upre1(P ) = fq 2 Q j 8m1 2 mov1(q): 9m 2 mov 2(q): 9p 2 Æ(q;m1;m2): p 2 Pg

(upre2 is de�ned symmetrically), and (2) computable boolean operations on state sets. If
we simply replace every pre operation by a upre1 operation in the algorithms for symbolic
bisimilarity, symbolic similarity, and symbolic safety checking, to the resulting procedures
we refer as algorithms for symbolic alternating bisimilarity, symbolic alternating similarity,
and symbolic safety control. For example, the algorithm for symbolic safety control computes
:
S

j�0 upre
j
1(:�). The names of the algorithms are justi�ed by the following theorem.

Theorem 2.1 1. The algorithm for symbolic alternating bisimilarity terminates when
applied to a symbolic representation HG of a game structure G whose alternating bisim-
ilarity quotient is �nite. If the algorithm terminates, its output is �=B

1 .

2. The algorithm for symbolic alternating similarity terminates when applied to a sym-
bolic representation HG of a game structure G whose alternating similarity quotient is
�nite. If the algorithm terminates, its output is �=S

1 .

3. If the algorithm for symbolic safety control terminates when applied to a symbolic
representation HG of a game structure G, its output is the set of states of G which
player-1 can control for 2�.

3 Rectangular Games

In this section, we apply the techniques developed in the previous section to a particular
class of in�nite-state game structures: rectangular hybrid games. For in�nite-state games,
algorithms for computing control strategies must either proceed symbolically on the state
space, or reduce the state space to a �nite quotient. We show that suitable �nite quotients
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shutdown

line2
_x2 2 [2; 3]
_l1 2 [1; 1]
_r 2 [1; 1]

line1
_x1 2 [1; 2]

x2 = 6 ^ l02 = 0
(�,done)

(request ,�)

(�,done)
x1 = 5 ^ l01 = 0

idle

_r 2 [1; 1]
_l1 2 [1; 1]
_l2 2 [1; 1]_r 2 [1; 1]

_l2 2 [1; 1]

r � 4
(request ,�)(request ,�)

r � 4

(request ,assign
1
) (request ,assign

1
)

r � 4 ^ l2 � 2 ^ r0 = 0 ^ x0
2
= 0r � 4 ^ l1 � 2 ^ r0 = 0 ^ x0

1
= 0

r � 4

Figure 2: Assembly line rectangular game

do exist for all rectangular games, and symbolic algorithms do terminate for some important
cases |timed/singular games, 2d rectangular games, and rectangular safety games.

We generalize the rectangular automata of [HKPV98] to rectangular games, which are
suitable for the study of control problems. A subset of Rn is rectangular if it is the cartesian
product of n intervals, all of whose (�nite) endpoints are rational. For the sake of simplicity,
in this abstract we restrict ourselves to the case where all rectangles are closed and bounded.3

Let Rn denote the set of all rectangles. If R is a rectangle, denote by Ri the projection
of R on its ith co-ordinate, so that R =

Qn
i=1Ri. For i = 1; 2, let Movestime

i = Moves i ]
ftimeg, where time is a special symbol not in Moves1 or Moves2. A rectangular game R =
(L;X;�; hh�ii;Moves 1;Moves2;Enabled1;Enabled2;
ow; E; jump; post) consists of a �nite set
L of locations; a set X = fx1; : : : ; xng of real-valued variables; a set � of observations; an
observation function hh�ii : L ! 2�; for i = 1; 2, the set Movesi of moves of player-i;
for i = 1; 2, the function Enabled i : Movestime

i � L ! R
n, which speci�es for each move

mi of player-i and each location `, the rectangle in which mi is enabled when control
is at `; the function 
ow : L ! R

n which maps each location ` to a rectangle which
constrains the evolution of the continuous variables when control is at `; the set E �
(L�Moves1�Movestime

2 �L)[ (L�Movestime
1 �Moves2�L) of edges which speci�es how

control may pass from one location to another; the function jump : E ! 2f1;::: ;ng which
maps each edge to the indices of continuous variables which are reset upon jumping along
that edge; and the function post : E ! R

n which constrains the values of the continuous
variables after a jump. The dimension of R is n, the number of continuous variables. Note
that for some set fR` j ` 2 Lg of rectangles Enabled1(time)\Enabled 2(time) =

S
`2L(`;R

`).
We therefore de�ne the invariant region inv(`) of location ` to be R`.

Informally, when a rectangular game is in state (`;x), time can progress as long as both
players choose time, and the system is in the invariant region inv(`). In addition, each
player is allowed to choose a discrete move that is enabled at the current state. During
discrete steps, for each i in the jump set jump(e), xi is nondeterministically assigned a new
value in the postguard interval post(e)i. For each i =2 jump(e), xi is not changed, and must
lie in post(e)i. Note that the timed games of [HW92, MPS95, AMPS98] are special cases of
our rectangular games.

As an example, consider an assembly line scheduler that must assign each element from
an incoming stream of parts to one of two assembly lines. At least four minutes pass between

3The general case can be treated analogously to [HKPV98].
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the arrivals of two successive parts. The two assembly lines process jobs at di�erent speeds:
on the �rst line, a job moves with a velocity between one and two meters per minute,
whereas on the second line, a job moves with velocity between two and three meters per
minute. Jobs must travel �ve meters on the �rst line and six meters on the second. Once
an assembly line �nishes a job, there is a clean-up phase, which introduces a delay of two
minutes for the �rst line and three minutes for the second line before the line can accept
a new job. If a job arrives when no line is ready to accept it or when a job is currently
being processed, the system shuts down. We wish to have a control strategy that ensures
that the system never shuts down. We model the system as a rectangular game, pictured
in �gure 2. The states are idle, to indicate that no request is being processed, line1 and
line2, to indicate which line is processing, and shutdown . The continuous variable r tracks
the time since the last arrival; variables l1 and l2 measure the amount of time since line one
and line two completed their last jobs; and variables x1 and x2 measure the distance a job
has travelled along line one and line two. The plant has a single move, request , which alerts
the scheduler to the arrival of a new job. The moves of the scheduler are assign1, assign2,
and done. The functions Enabled i and post can be inferred from the guards on the edges in
�gure 2. It can be seen that a strategy which assigns jobs �rst to one assembly line, then to
the other, and so on, ensures that the system, when started from location idle, and r � 4,
l1 � 2, l2 � 2, never shuts down. It can also be seen that a strategy that always chooses
the same line does not work.

We now formally de�ne the semantics of rectangular games. With the n-dimensional
rectangular game R we associate the underlying game structure

GR = (L� R
n ;�; hh�ii0;Movestime

1 ;Moves time
2 ;Enabled 1; Enabled2; Æ)

where hh(`;x)ii0 = hh`ii, and (`0;x0) 2 Æ((`;x);m1;m2) if either

� [Time step of duration t > 0] `0 = `, (m1;m2) = (time; time) and x0 = x+t �s,
where s 2 
ow(`) and for all 0 � t0 < t, (x+ t0 � s) 2 inv(`);

� [Discrete step] there exists an edge e = (`;m1;m2; `
0) 2 E such that for

i = 1; 2, mi 2 mov i(`;x), x
0 2 post(e), and x0i = xi for all i =2 jump(e).

For a rectangular game R, and an Ltl formula ', the Ltl control problem asks which
states of GR can be controlled for '. Since the divergence of time can be expressed in Ltl,
when studying the Ltl control problem there is no need to restrict our attention to the
runs of a rectangular games along which the sum of durations of all time steps diverges.

Let xi be a variable of a rectangular game R. The variable xi is a clock if for each
location `, 
ow(`)i = [1; 1], and a �nite slope variable if for each location `, 
ow(`)i is a
singleton. The rectangular game R has deterministic jumps if for each edge e, and each
coordinate i 2 jump(e), the interval post(e)i is a singleton. The rectangular game R is
initialized if for every edge e = (`; �; �; `0) and every coordinate i, if 
ow(`) 6= 
ow(`0) then
i 2 jump(e). If R has deterministic jumps, then R is a timed game if every variable is a
clock, and R is a singular game if every variable is a �nite-slope variable. In what follows,
we shall only consider initialized rectangular games with deterministic jumps.4 Without
loss of generality, we assume that all constants appearing in the de�nition of a rectangular
game are integers.

The alternating bisimilarity (similarity, language-equivalence) quotient of a rectangu-
lar game R is de�ned to be the alternating bisimilarity (similarity, language-equivalence)

4For non-initialized games, the reachability problem is already undecidable [HKPV98].
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quotient on the underlying game structure GR. In what follows, we shall speak of one rect-
angular game R1 simulating another rectangular game R2, with the understanding that
this refers to a simulation relation on the disjoint union of the states of GR1

and the states
of GR2

.

3.1 Game bisimilarity for singular games

To see that every singular game has a �nite game bisimilarity quotient, we �rst de�ne region
equivalence, as follows. Let a = (a1; : : : ; an) be an n-tuple of integers. Let fract(x) denote
the fractional part of x. For a vector x, let fract(x) denote the vector whose ith coordinate
is fract(xi)). De�ne x �a y i� for i = 1; 2, (1) baixic = baiyic, (2) fract(aixi) = 0 i�
fract(aiyi) = 0, and (3) for j 6= i, fract(aixi) < fract(ajxj) i� fract(aiyi) < fract(ajyj).
Using this, we de�ne the region equivalence relation �R on the states of a singular game
[AD94, ACH+95]. For each xi 2 X, let ci denote the largest rational constant with which
xi is compared in the singular game. Two states (`;x) and (`0;x0) are region equivalent if
(1) ` = `0, (2) for all xi 2 X, either bxic = bx0ic or both bxic and bx0ic are greater than
ci, and (3) fract(x) �a fract(x0), where ai = ki if 
ow(`)xi = [ki; ki], ki 6= 0, and ai = 1 if
ki = 0. Note that a = (1; 1; : : : ; 1) for a timed game.

In [AD94, ACH+95], it was shown that region equivalence is a bisimulation for all timed
and singular automata. In fact, using Proposition 2.2, we can show the stronger result that
region equivalence is a game bisimulation for all singular games.

Theorem 3.1 For every singular game, the region equivalence �=R re�nes the game bisim-
ilarity �=B

obs , which is equal to the alternating bisimilarities �=B
i for both i = 1; 2.

Corollary 3.1 Every singular game has a �nite quotient structure with respect to game
bisimilarity. It can be computed by the algorithm for symbolic alternating bisimilarity, which
terminates when applied to singular games.

(It should be noted that Proposition 2.2 indicates an alternative way of symbolically com-
puting �=B

obs , which is inferior, however, because it must explicitly handle moves.) The
game bisimilarity quotient of a singular game may have an exponential number of equiva-
lence classes (regions). Since it re�nes game trace equivalence, by Proposition 2.3, the �nite
quotient can be used for Ltl controller synthesis.

Corollary 3.2 The Ltl control problem for singular games is Exptime-complete in the
size of the game and 2Exptime-complete in the length of the Ltl formula.

Singular games are a maximal class of hybrid games for which �nite alternating bisimilarity
quotients exist. In particular, there exists a 2d rectangular game R such that the equality
relation is the only alternating player-1 bisimulation on GR [Hen95].

3.2 Game similarity for 2D rectangular games

We de�ne the double-region equivalence relation �=2R on the states of a 2d rectangular game
as the intersection of two region equivalences, as follows. Let �a and �b be two equivalence
relations as de�ned above. Call the intersection of these two equivalence relations �a;b. Let
c be the largest rational constant that appears in the de�nition of the 2d rectangular game.
For a location ` with 
ow(`) = [a1; b1] � [a2; b2], let `a = (a2; b1) and `b = (b2; a1). Two
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states (`;x) and (`0;y) of a 2d rectangular game are double-region equivalent , in symbols
(`;x) �=2R (`0;y), if (1) ` = `0, and (2) fract(x) �`a;`b fract(y), and (3) for i = 1; 2 either
bxic = byic or both xi > c and yi > c. Note that the number of equivalence classes of �=2R

is exponential in the description of the 2d rectangular game.
In [HHK95], it was shown that double-region equivalence is a simulation for all 2d

rectangular games. In fact, using Proposition 2.2, we can show the stronger result that
double-region equivalence is a game simulation for all 2d rectangular games.

Theorem 3.2 For every 2d rectangular game, the double-region equivalence �=2R re�nes
the game similarity �=S

obs , which is equal to the alternating similarities �=S
i for both i = 1; 2.

Corollary 3.3 Every 2d rectangular game has a �nite quotient structure with respect to
game similarity. It can be computed by the algorithm for symbolic alternating similarity,
which terminates when applied to 2d rectangular games.

The game similarity quotient may have an exponential number of equivalence classes (double-
regions). Since the game similarity quotient re�nes game trace equivalence, by Proposi-
tion 2.3, the �nite quotient can be used for Ltl controller synthesis.

Corollary 3.4 The Ltl control problem for 2d rectangular games can be solved in time
exponential in the size of the game, and is 2Exptime-complete in the length of the Ltl
formula.

2d rectangular games are a maximal class of hybrid games for which �nite alternating
similarity quotients exist. In particular, there exists a 3d rectangular game R such that the
equality relation is the only alternating player-1 simulation on GR [HK96].

3.3 Game trace equivalence for rectangular games

Although initialized rectangular games do not have �nite alternating similarity quotients,
we can show that they have �nite game language-equivalence quotients.

To prove this, we sketch how to translate an n-dimensional rectangular game R into a
2n-dimensional singular game SR such that R and SR are game language equivalent. For
details, see [HKPV98]. The game SR has the same vertex set, move sets, observables, and
observation function. We replace each variable xi of R by two �nite-slope variables clower(i)
and cupper (i) such that when 
owR(v)(xi) = [klower ; kupper ], then 
owSR(v)(clower (i)) =
[klower ; klower ], and 
owSR(v)(cupper (i)) = [kupper ; kupper ]. Intuitively, the variable clower(i)
tracks the least possible value of xi and the variable cupper (i) tracks the greatest possible
value of xi. With each edge step, the values of the variables are appropriately updated so
that the interval [clower (i); cupper (i)] maintains the possible values of xi.

To prove that R and SR are game trace equivalent, we de�ne a map 
 : QSR ! 2QR

which maps each state of SR to a set of states ofR, by 
(`;x) = f`g�
Qn

i=1[xlower(i); xupper (i)].
Call a state (`;x) 2 QSR an upper-half state of SR if for every index i 2 f1; : : : ; ng, we
have xlower(i) � xupper (i). Notice that we are only interested in upper-half states of SR. We
set 
(q) = ; if q is not an upper-half state of SR. The upper-half space of SR is the set of
all upper-half states. In [HKPV98], it was shown that a state q of the singular game SR
(forward) simulates with observable moves any state p 2 
(q) of R, and any state p 2 
(q)
backwards simulates q with observable moves. From this, we have:
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Lemma 3.1 Let R be a rectangular game, let q be a state of the singular game SR, and let
p 2 
(q) be a corresponding state of R. Then p is game simulated by q, and q is backward
game simulated by p.

The above result also holds when the durations of the time moves are also observable.
Note that the above lemma only ensures equivalence for �nite traces. However, since
the rectangles used in the de�nition of rectangular games are compact, it follows (as in
[HKPV98]) that the language of the R is limit closed5. Hence, the above lemma is suÆcient
to show game trace equivalence.

Theorem 3.3 For every rectangular game R, every state q of the singular game SR, and
every state p 2 
(q) of R, the states p and q are game trace equivalent.

Since the singular game SR has a �nite game trace equivalence, it follows that the rectangu-
lar game R also has a �nite game trace equivalence. The game trace-equivalence quotient
of R can be used for controller synthesis (Proposition 2.3). It may have an exponential
number of equivalence classes (corresponding to the regions of SR).

Corollary 3.5 Every rectangular game has a �nite quotient structure with respect to game
trace equivalence.

Corollary 3.6 The Ltl control problem for rectangular games is 2Exptime-complete in
the size of the game and 2Exptime-complete in the length of the Ltl formula.

Rectangular games are a maximal class of hybrid games for which �nite alternating trace-
equivalence quotients are known to exist. In particular, for triangular games, where some
enabling conditions for moves have constraints of the form xi � xj, the reachability problem,
and therefore the safety control (' = 2�) problem, are undecidable [HKPV98]. We also
note that the shape of a witnessing strategy for the Ltl control of rectangular games,
even for the safety control of timed games, is not necessarily rectangular, but may require
triangular constraints of the form xi � xj to determine which move to apply in a given
state. Hence, the synthesized controller may not be implementable as another rectangular
automaton. This is in contrast to the timed case, where the timed automata with triangular
enabling conditions are reducible to �nite quotients [AD94] and closed under controller
synthesis [MPS95, AMPS98].

We conclude with an observation that is important for making the control of rectangular
games practical. For the safety control of a rectangular game R, rather than constructing
the region equivalence quotient of SR, it is computationally much preferable to iterate a
symbolic upre1 operator directly on R. The following theorem shows that this iteration,
which is being implemented in HyTech, always terminates.

Theorem 3.4 The algorithm for symbolic safety control terminates when applied to rect-
angular games.

5An !-language L is limit closed if for every in�nite word �, if every �nite pre�x of � is a pre�x of some
word in L, then � is in L.
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4 Conclusions

Our results for two-player hybrid games, which extend also to multiple players, are sum-
marized in the right column of the table below. They can be seen to cleanly generalize the
known results for hybrid automata (i.e., single-player hybrid games), which are summarized
in the center column. The number of equivalence classes of all �nite equivalences in the
table is exponential in the given automaton or game. The in�nitary results in the right
column follow immediately from the corresponding results in the center column.

Hybrid automata (single-player) Hybrid games (multi-player)

Timed, singular �nite bisimilarity �nite game bisimilarity
[AD94, ACH+95]

2d rectangular in�nite bisim., �nite similarity in�nite alt. bisim., �nite game
[HHK95, Hen95] similarity

Rectangular in�nite sim., �nite trace equiv. in�nite alt. sim., �nite game trace
[HKPV98, HK96] equiv.

Triangular in�nite trace equiv. in�nite alt. trace equiv.
[HKPV98]
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